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ABSTRACT

Suppose a random vector X has a multinormal distribution with

k
covariance matrix t of the form E 0 Mi, where the M 's form

i-l

a known complete orthogonal set and e 's are the distinct unknowni
eigenvalues of t. The problem of estimation of t is considered

under several plausible loss functions. The approach is to

establish a duality relationship: estimation of the patterned

covariance matrim t is dual to simultaneous estimation of scale

parameters of independent chi-square distributions. This duality

allows simple estimators which, for example, improved upon the MLE

of t. It also allows improved estimation of trt. Examples are
given in the case when t has equicorrelated structure.

1. INTRODUCTION AND SUMMARY

Recently there has been considerable interest in the

estimation of the covariance matrix of a multivariate normal

distribution. This problem is addressed extensively in Stein

(1975, 1977), Olkin and Selliah (1977), Haff (1977, 1979, 1982),

and Dey and Srinivasan (1985, 1986) under plausible loss functions.

However, there is no work of our kind available in the literature

when the covariance matrix has an assumed structure.

Suppose a random vector X has a multinormal distribution with

mean zero and covariance matrix t, which has the form

k
= 0 M (.1)ii

i-l

where the 6 's are the distinct but unknown eigenvalues of t andi

the M 's are a known complete orthogonal set of projection
imatrices. Such a structure for arises in many practical
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situations. A familiar example is the equicorrelated case, that

is, o'[(1-0)I + oJ ] where I is the identity matrix and J

is a p x p matrix of l's. This is often referred to as

intraclass correlation structure. More

generally, patterned covariance matrices of the form (1.1) arise

naturally in variance component models. See Albert (1976) for

details.

From the classical viewpoint one would estimate t by

obtaining the maximum likelihood estimates of the e 's using thei
normality of X. In this paper, however, we take a decision

theoretic approach for the estimation of t using the following

loss structures:

L (,) = tr( -t) (1.2)q
and

L e -:A) tr4 - 1  logl p (1.3)

The loss (1.2) is the usual extension of squared error loss (SEL)

and the loss (1.3) is based on entropy measure of distance. Under

these losses the MLE is inadmissible and substantial improvement is
available (see Table 1). We may show that fork

estimators of the form e M , these losses become, respectively,

k i-Iii

i-i

k
L(e,e) - Z p i[ei /ei - log(i /ei ) - 1] (1.5)

i-i k

where pi = rank(Mi), ? = (k * " ) and E p, - p .

i=l

In addition, we note the following result essentially given

in Albert (1976).
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Theorem 1.1. Suppose X ^ N (O,t). Define Q. = X'M iX, where
p 1

k

I = E Mi Mi being orthogonal projection matrices free from
p i-Il

's, having rank(Mi) - Pi' i=l, ... , k(< p). Then a necessary and
i 2 -
sufficient condition for (1) Q "'x i, ... , k, and

k
(2) Q i's mutually independent ts z e M .

i-i

The equivalence of (1.2) and (1.4) and of (1.3) and (1.5) for

k

estimators of the form E e M along with Theorem 1.1ii
i-i

establishes the following duality. Estimation of the patterned

covariance matrix t in (1.1) under loss (1.2) ((1.3)) is dual to

simultaneous estimation of the scale parameters of independent

chi-square random variables under loss (1.4) ((1.5)). k

It is to be noted that in the decomposition of E = eiMi,

i=l

the i's are the distinct eigenvalues of t with multiplicity pi"
Thus, for example, in the equicorrelated model

a 2[(i-o)I + PJ ], 6 0 2(1-0), 6 = a 2{1 + (p-1)P},p p' 1 2

-i -i
MI =I -p J , M2 

= p J , P, = p -1, and p 2 = 1.

In Section 2, we study the estimation of t under loss (1.2)

and also trt under SEL. We illustrate for t with equicorrelated
2

3tructure. In this case, improved estimation of a is discussed.
2

Additionally, improved estimation of Pc is also considered.



5

Section 3 is devoted to estimation of t under loss (1.3).

Finally, in Section 4, some encouraging numerical results are

given for the equicorrelated model.

2. IMPROVED ESTIMATION UNDER L LOSS
q

2.1. Estimation of ts

Here we assume the conditions of Theorem 1.1 and generalize
k

slightly the above discussion to estimation of s = 8. M. under

the loss 
i=l '

L (i s ,s)= tr( S - ts)2 (2.1)

q '

k

which, using estimators of the form E 8. M., is dual to the
i=l

estimation of e= (el,... ,e) under the loss
I k

s k s s 2
L( eeS) = E pi(O. - e.) . (2.2)i=l '

For the estimation of t, s = 1; for the estimation of the precision

matrix -, s = -1. Let Q = (QI""...'k) where Qi U iXi2 and are
k ~ i p.

independent. Suppose 6 0(Q) is an estimator of es given componentwise
0s6()= aQ -s

as 6,Q= a.Q i = 1,...,k. For example, a. P. gives the MLE of

5 ii5 i = i

e..
i'

Now define

(1) r. =E(Q.1e. = l)/E(Q1je i = i)
i C, 1 1. i

= C B r((Pi+2a)/2)/r((Pi
+ 2 ) / 2 ) .

k a.
(2) For a = (aI  ak a =l O k()i = i1)

k a.
= 11 2 r((Pi+2a,)/2)/r(pi/2).

i=l

Note that a. = r. gives the best invariant estimator of e. under
1 i,s,2s i

squared error loss.
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Thus s = Epi Qi is the maximum likelihood estimator of t and

s = Er Qi is the estimator obtained by combining the best
i's,2s i

invariant estimators of e . The following lemma shows that t

dominates s under the risk criterion.

Lemma 2.1. R(t4 5 ) < R( M~t ) V ~

Proof. Immediate from the duality (2.1), (2.2) and the fact that
r.- s.s

r Q 2s~i dominates pi Q. in estimating e
s

In view of Lemma 2.1, it is sufficient to find estimators which

improve t. We have the following theorem whose proof is a special

case of a result in Dey and Gelfand (1987).

Theorem 2.1. Consider the estimator 6(Q) = ( I(Q),. .., k(Q))

given componentwise as

6i(Q)=60 (Q) =b( 1 Q.1S/k,...,k(> 2) (2.4)j=l * '-

0 5where 6s(Q) r ,2sQ i . Then provided all expectations exist, 6(Q)

dominates 6 0(Q) under loss (2.2) if

O~<v d(1) (2)
0 < b < 2vs/k /V2s/kd

where d(I ) = min(pildif) and d(2) = max(pi) with

d. = ri,s,2s (k+l)s/k,s/k 1, i = 1,...,k.

In view of Theorem 2.1, it follows that under the loss (2.1), an

improved estimator of ts is given as

k k
=Z 6.(Q)Ml = + b(Qj)S/k. I. (2.5)

X .()M j=l

Remark 2.1. Theorem 2.1 requires only that Q. follow a distribu-

tion with 0. as scale parameter. In this setting Dey and Gelfand1
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(1987) offer more general results than Theorem 2.1 including estimators

which provide maximum improvement along a ray determined by a specified

vector e . These estimators shrink (expand) differently on each

coordinate. Using the fact that the Qi are distributed as multiples

of chi-square random variables enables Klonecki and Zontek (1987) to

provide necessary and sufficient conditions for the existence of an

estimator of the form (2.4) to dominate 60 given componentwise as

6 . = a.Q. for any specified a., i = 1,...,k.
i i ii

Example: Suppose j has equicorrelated structure. In this case

6I = a 2( - p), a2 = a 2{l +(p - I)p}, are the distinct eigenvalues of

. The best invariant estimate of e. is 6 (Q) = (pi + 2)- 1 Qi with

p1 = p - I and P2 = 1, a class of improved estimators of e = (e,e 2 )

is given componentwise as

i.(Q) = (pi + 2)-Qi + b( I Q2 ) i = 1,2 (2.6)

whre0< b < 23d(1) (2)

where 0 d 2vd(/id and the upper bound on b simplifies to

27(p/2)/3(p-l)F((p+l)/2)Y'.

The corresponding improved estimator of has the simple form

bI (2.7)

Remark 2.2. Improved estimation of e- = (el,...,ek) hence of
1 k

flI, follows directly from Theorem 2.1. We only need the existence

of appropriate reciprocal moments of the Qi" Unfortunately, in the

equicorrelated case EQ. does not exist for a > I and, hence, our

approach does not provide a dominating estimator.
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2.2. Estimation of trace of

Consider now estimation of the trace of under the SEL given

as

2
L(a,trj) = (a - trt) (2.8)

k
Since tr4 = z piei our duality converts estimation of the trace to

i=l11
estimation of a linear combination of chi-square scale parameters.

The following theorem gives a class of admissible estimators of
k
Z i.e. if z. > o.
i=l 1 1 1

Theorem 2.2. If a. > 0, i = 1,...,k, known then under the loss
1

(2.8) k
i~ i cx k

6 (Q)= =1 Z Qi/i (2.9)
Lp+2 i= I

k
is admissible for z i.e..

i=l

Proof. Consider the subset of the parameter space

C = {(e1,...,e k ) : e. = te, a'  > 0, i = 1,...,k}.

2 k
Then Qi/a L %ex , i ,...,k. Thus, on C, Z Qi/a . is sufficient for

k 2 i=l
e and E Q i/i / ex Thus, by a theorem of Karlin (1958),
k i=l p

Qi/a.i=l 1

is admissible for e under SEL. Then on C, 5 (Q)

k k k k
= {( I Q.c.) F Qicci}/(p+2) is admissible for z z. .6 = E z.e

i1  i= I  i=l 1 i=1 l

k *

Suppose 6 (Q) is inadmissible for Z k i.. Then there exists 5 (Q)
i=l 1'

which dominates a(Q). But 6 (Q) being admissible on C implies

5a(Q) = 5X (Q) a.s.
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Note that since pi > 0 in the expression for tri Theorem 2.2 applies.

Remark 2.3. Consider the equicorrelated structure. As a special

case, a.p 1 gives X'X admissible for trace t and hence X'X/(p+2)

2
admissible for a Similarly a. = P/i(pi+2) implies
k 2 1
E pi/(pi+2) k

i=l 1 1 k2.
Z PiQi/(Pi+2) is admissible for a , i.e., an appropriate linear

p+2 i=1

combination of the componentwise best invariant estimator is admissible.

Now we will demonstrate a general method for improving on a linear

estimator of a linear combination. The improved estimators are nonlinear,

and may shrink or expand the given linear estimator. Work of Das Gupta

(1986), Dey and Gelfand (1987), and Klonecki and Zontek (1987) is relevant

here. A general result is:

Theorem 2.3. Provided expectations exist, an estimator of trt
k k

of the form 60 = z kiQi (z. = I yields E Qi = X'X the MLE, which is
iI 1 i=l

also UMVUE) is dominated by

k r.6 =60 +c fIQ*J (2. 10)
r,c 0 j

k
where r. > 0, E r. = 1, if and only if either

J - j=1  J

(i) d (1) > 0, r. = 0 if d. 0 an: c > 0 sufficiently small,

(ii) d (k)< 0, r. = 0 if d. = 0 and c < 0 sufficiently large,

where d. = (1-ki)pi/2 - i.r., i 1,...,k and d(l) = min d., d

= max d..1

Proof. The risk difference between (2.10) and 60 is

2 k 2r. k r. k
T c e. - c I e.J  Z .d.

2r j=l r _ j j=l
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Suppose (i) holds (the proof for (ii) is similar) and that all

j such that r. d. = 0 have been deleted in L(O). Then

k

k 2r. Z e.d.

A(M) CV2r E a. JEc - r --l 3 J ].
i=l 2r k r.

O.

r. r.
But Ee.d./R6.j > I(d./r.) J. Hence, A(e) < 0, Ve, if c is positive

J J. J3 - j3 .

and sufficiently small.

Remark 2.4. In particular, when Z. = I any set of nonnegative
1

r. such that Er. = I and at leist two r. differ from zero will work.1 1 1

Here c < 0 so that the dominating estimator is a shrinker. Since

tr4 > 0, 6+  = max(6 ,0) will dominate 6 (using a lemma of Klotz,
r,c r,c rc

Milton and Zacks (1969), p. 1394).

Example. Again consider the equicorrelated structure. Clearly

trl = po 2 . Thus, using (2.10), we can explicitly dominate X'X in esti-

2 2
mating pa , hence X'X/p in estimating a by nonlinear estimators. For

instance, the estimator

6* = X'X/p + b(Q1Q2  (2.11)

dominates the MLE under loss function (6 - a2) 2 if

- 4r(p/2)/pF(P; 1 ) v7 < b < 0.

Remark 2.5. If we attempt to apply Theorem 2.3 to linear

estimators of the form (2.9), we will discover that all d.'s are

equal to zero. In particular, in the above example, we cannot

dominate X'X/(p+2) in estimating a2 .

Continuing with our example, suppose P > 0 and consider estimation

of pa2 which may be viewed as variance component. (See Gelfand and Dey
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(1988) for more detailed discussion of improved estimation of variance
2

components.) Since Pa = (e2-e 1 )/p, we consider the estimator

50= pI (a2Q 2 - alQ I)

where a. = (p. + 2t _-1, i = 1,2, with 0 < F. < 1. For example, taking

E. = 0, i 1,2, 60 becomes the MLE of 0 2 and taking c. = 1, 60 is formed
1 0

from the best invariant estimator of 6., under SEL, i = 1,2. A class
1

2of improved estimators of 0o , is given as

0 l -r
6 = 60 + b(alQl) (a2Q2 ) (2.12)

using Theorem 2.3, provided r > 0 can be chosen such that either (i)

r < min(c1 , I - E 2) whence b must be positive and sufficiently small

or (ii) r > max(l, - C2 ) whence -b must be positive and small. In

+

fact, we would use 6

Remark 2.6. Nate that Theorem 2.2 does not provide admissible

2.
estimators of Pr since £. < 0.

3. IMPROVED ESTIMATION UNDER L LOSSS-

In this section we consider the estimation of patterned t under

loss (1.3). Using the aforementioned duality for estimators of the

k,

form Z e.M., we convert this problem to simultaneous estimation of
i=l

the eigenvalues e = (e . k. of $ under the loss (1.5). In fact,
s s

our results can be extended to the estimation of es = (I

and hence the estimation of s. However, it is not clear how to apply

loss (1.3) in estimating trt which is not a scale parameter.

Our approach is that of Berger (1980) and Dey, Ghosh and Srinivasan

(1987). Assume Qi are independent Gamra(co.,n.) (CLi > 0, . >0)

random variables, having density
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xi a.- e-Qini/

f(QilQi )  e ni Q i f(Oi). (3.1)

-l
In our case, we have a. = p./2, ni = (26.) whence the loss (1.5)

-i
corresponds to simultaneous estimation of the n. ; that is,

i

k
L(6,n-I z - log(6.n.) - 1]

i=l

0
Since the MLE of e. is 6.(Q) = Q /p, the MLE and the unbiased estimator1 1 11'

-1 02 i
of 8i = n.1 /2 is 6. (Q) = Qi/  , i = 1,...,k. From Dey, Ghosh and

Srinivasan (1987), it follows that 6 0(Q) = (6 (Q),...,6 (Q)) is admissible

for k = 2 if min(a, a ) > 4. To seek a dominating estimator, we require

k > 2.

Now assuming the conditions in Lemma 1 of Berger (1980), it

follows that if

6(Q) = 5 (Q) + 1(Q) (3.2)

is a rival estimator, the risk difference is

0A(e) = R(6,e) - R(6 ,6) = E A0(Q) ,

where .1 0 (Q) is the unbiased estimate of the risk difference given as

k
A0 (Q) = l i(1)(Q) + (a.-l) i(Q)/Qi - log(l+aiti(Q)/Qi)]

with 1 (Q) - ¢i(Q)/Qi Defining i(Q) = Qipi(Q), one gets

A[(Q) = pQii I (Q) + a. .(Q) - log(l + ai i(Q))]. (3.3)

01 1I

In order to obtain an improved estimator 6(Q), it is sufficient

to find a solution t0(Q) < 0 with strict inequality for some set of Q.
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The following Lheorem gives a class of dominating shrinkage

estimators.

Theorem 3.1. Suppose S = E log 2(Qi/2). Consider ar estimator

6(Q) = (61 (Q),...6 k(Q)) given componentwise as

= i Q. - Q.T(S)log(Qi/2)/2(b+S), i = 1,...,k, (3.4)

with b > (5.76)(k-2) 2/p 2 , where p* = max pi and T(S) is a function

satisfying

(i) 0 < T(S) < 4.8(k-2)/p
2

(ii) T(S) t in S and

(iii) E[T'(S)] < -. (3.5)

Then 6(Q) dominates 6 0(Q) for k > 3, in terms of risk.

Proof. The argument is similar to that of Theorem 3.1 of Dey,

Ghosh and Srinivasan (1987).

Remark 3.1. Using Theorem 3.2 and 3.3 of Dey, Ghosh and Srinivasan

(1987), adaptive estimators and trimmed shrinkage estimators of e can

be obtained as well.

In concluding this section, we observe another illustration of our

duality relationship. Improved estimation of patterned t under the

scale invariant loss

LI(j,E) = tr(j - I - 1)2  (3.6)

using estimators of the form e g.M., converts to simultaneous
i=I 1 1

estimation of e = (61,...,k ) under loss
kk

k 2
L(e,e) = z pi(.I/e. -I)2 . (3.7)

i=l 1 1
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Again, Berger's approach yields a differential inequality (the

only difference will be the presence of the weights, p.) whose1

solution leads to dominating estimators similar to those in (3.4).

Details are omitted.

4. NUMERICAL RESULTS

2Tstudy the performance of the MLE M  P I ~Qi ,-

2 i=l
o= 2=(Pi + 2)-iQi and = iO + b(QIQ2 Ip, we calculate risks

i=l11

for different values of p and p in the equicorrelated structure. We
2

took o I and b = F(p/2)/3(p-l)r((p+l)/2)/, which is the midpoint

of the allowable range. We then computed the percentage improvements
-I

for selected values of p and p (-(p-l) < P < 1). The improvements of

over the MLE are substantial. While the percentage improvements

in risk of over $0 are small, the simplicity of encourages its use.
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TABLE 1

PERCENTAGE IMPROVEMENTS OVER EM AND E0
M 0

R( M) -R($) _____0_____

PPI1 - x 100 P12 - x 100

-.75 67.94 3.83
-. 50 68.43 5.31
-.25 68.78 6.35

0 68.92 6.75
.25 68.78 6.35
.50 68.44 5.31
.75 67.94 3.83

0 49.25 3.11
.25 63.77 2.45
.50 66.42 1.50
.75 66.85 .85

p = 10

0 43.50 1.87
.25 64.66 1.23
.50 66.50 .70
.75 66.75 .39
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